Koichi's free world for solitary meditation

  • 哲学-Philosophy
  • 物理-Physics
  • 数学-Mathematics
    • 微积分-Calculus
  • 法律-Law
    • 民法-Civil
    • 知识产权-Intellectual
    • 刑法-Criminal
  • 历史-History
  • 语言-Language
  • 文学-Literature
  • 编程-Program
  • 关于本站以及某人的一些事情(Hint:浏览本站前必看😇)
  • 文章发布时间表
  • 资源检索
從前種種,
譬如昨日死;
從後種種,
譬如今日生。
Koichi's free world 已不稳定运行了0天☀︎☽🙄🥺
人生如此短暂➠人生倒计时
X 天 X 时 X 分 X 秒

Newton's second law of motion F = ma = $m\cdot \dfrac{dv}{dt} $can be written in the form $F=d/dt\left( mv\right)$  in terms of the momentum mv of a particle of mass m and velocity v, and remains valid in this form even if m is not constant, as assumed so far. Suppose a spherical raindrop f...

Drag exerted on condensing raindrop

  • 2023-09-04
  • 2
  • 3

In a certain barbarous land, two neighboring tribes have hated one another from time immemorial. Being bar­ barous peoples, their powers of belief are strong, and a solemn curse pronounced by the medicine man of the first tribe deranges the members of the second tribe and drives them to murder a...

A simple integration problem

  • 2023-07-23
  • 0

点直线距离公式的详细推导

  • 2023-05-14
  • 0
  • 1

A trough is to be made from three planks, each 12 in wide. If the cross section has the shape of a trapezoid, how far apart should the tops of the sides be placed to give the trough maximum carrying capacity?

  • 2023-03-29
  • 0

证明$\dfrac{d^{n}}{dx^{n}}\left[ \dfrac{1}{x\left( 1-x\right) }\right] =n!\left[ \dfrac{\left( -1\right) ^{n}}{x^{n+1}}+\dfrac{1}{\left( 1-x\right) ^{n+1}}\right]$

  • 2023-03-20
  • 0

考虑由以下定义的函数:如果x=0,则$f\left( x\right) =0$;如果x不等于0,则$f\left( x\right) =x^{2}\cdot \sin \dfrac{1}{x}$的某些性质。

  • 2023-03-18
  • 0

考虑一个函数:当x=0时,y=0;当x不等于0时,$y=x\cdot \sin \dfrac{1}{x}$。证明这个函数在x=0时是连续的,并且证明这个函数在x=0处的导数不存在

  • 2023-03-18
  • 0

给出两个来自chatgpt的参考证明方法,显然方法二更符合题意(可以直接看方法二)。 方法一: Let $y=u^n$, where $n$ is a positive integer. Expanding $\Delta y = (u + \Delta u)^n - u^n$ using the binomial theorem, we get: $\Delta y = u^n + \binom{n}{1}u^{n-1}(\Delta u) + \binom{n}{2}u^{n-2}...

Prove the power rule for positive integral exponents n by writing $y=u^{n}$, expanding $\Delta y=\left( u+\Delta u\right) ^{n}-u^{n}$ by the binomial theorem, and then dividing by $\Delta x$. Use the quo­tient rule to extend this result to negative integral expo­nents.

  • 2023-03-17
  • 0

我们可以使用链式法则和乘法法则来对该函数求导。具体来说,我们需要将函数表示为若干个简单函数的复合。 设 $u = 4x^3 - 9x^2$,$v = 3x - 2x^2$,则原函数可以写成: $$y = u^2 v^3$$ 接下来我们分别对 $u$ 和 $v$ 求导: $$\frac{du}{dx} = 12x^2 - 18x$$ $$\frac{dv}{dx} = 3 - 4x$$ 然后根据乘法法则和链式法则,我...

对$y=\left( 4x^{3}-9x^{2}\right) ^{2}\cdot \left( 3x-2x^{2}\right) ^{3}$求导

  • 2023-03-15
  • 1
  • 1

二项式定理(英语:binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理(以上定义来自于百度百科) 通常来说,其数学表达式可以写为:$$\left( a+b\right) ^{n}=a^{n}+n...

二项式定理(binomial theorem)的两种推导方式

  • 2023-03-13
  • 0
  • 1
  • 2
  • 3
© 2025 Koichi's free world for solitary meditation
           ® Koichi can never stop ☞ 2123 🤪
Koichi1994 Keep-thinking
  • {{ item.name }}
  • {{ item.name }}