Derive formula
  微積分

Derive formula

 次点击
11 分钟阅读
使用自定义字体 使用自定义字体

Derive formula \frac{\mathrm{d} \cos x}{\mathrm{d} x}=-\sin x,by using the identities \cos x =\sin (\frac{\pi }{2}-x) and \sin x =\cos (\frac{\pi }{2}-x)

We can use the chain rule and the given identities to find the derivative of \cos xwith respect to x as follows:

\frac{\mathrm{d}}{\mathrm{d}x} \cos x = \frac{\mathrm{d}}{\mathrm{d}x} \sin\left(\frac{\pi}{2} - x\right)

Using the chain rule, we can write this as:

\frac{\mathrm{d}}{\mathrm{d}x} \sin\left(\frac{\pi}{2} - x\right) = \cos\left(\frac{\pi}{2} - x\right) \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\pi}{2} - x\right)

Using the identity \cos(\frac{\pi}{2} - x) = \sin x, we can simplify this to:

\frac{\mathrm{d}}{\mathrm{d}x} \cos x = \sin x \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\pi}{2} - x\right)

Since the derivative of a constant is zero, we have:

\frac{\mathrm{d}}{\mathrm{d}x} \cos x = \sin x \cdot (-1)

Therefore, we get:

\frac{\mathrm{d}}{\mathrm{d}x} \cos x = -\sin x

Hence, we have derived the formula \frac{\mathrm{d} \cos x}{\mathrm{d} x} = -\sin x using the given identities.

© 本文著作权归KOICHI所有,未经许可不得转载使用。