极限与导数(献给CHATGPT)
  微積分

极限与导数(献给CHATGPT)

 次点击
16 分钟阅读
使用自定义字体 使用自定义字体

一直以来,对于极限的概念都十分模糊,所以在解决此涉及极限的问题时,无从下手。

由于此前CHATGPT的数学能力一直不尽如人意,今天怀着试一试的心态,在对话框中输入了本题,令人惊讶的是,它居然给出了令人十分满意的答案。特此记录,献给CHATGPT!

题目如下:

If a is a positive number, show that

\lim _{x\rightarrow 0}\dfrac{a^{x}-1}{x}=\ln a

Hint: The limit is a value of a certain derivative.

CHATGPT给出的解题步骤(详细且逻辑性极强):

To show that

\lim _{x\rightarrow 0}\dfrac{a^{x}-1}{x}=\ln a

we can use the definition of the derivative of a function at a point. Recall that the derivative of a function f(x) at a point x=c is given by

f'(c)=\lim _{x\rightarrow c}\dfrac{f(x)-f(c)}{x-c}

Now, let f(x)=a^x , where a is a positive number. Then, the derivative of f(x) at x=0 is

f'(0)=\lim _{x\rightarrow 0}\dfrac{f(x)-f(0)}{x-0}=\lim _{x\rightarrow 0}\dfrac{a^x-a^0}{x}=\lim _{x\rightarrow 0}\dfrac{a^x-1}{x}

Therefore, we have

\lim _{x\rightarrow 0}\dfrac{a^{x}-1}{x}=f'(0)

But what is f'(0) ? We can use the property of logarithms that says

a^x=e^{x\ln a}

Then, we have

f(x)=a^x=e^{x\ln a}

Using the chain rule, we can find the derivative of f(x) as follows:

f'(x)=\dfrac{d}{dx}(e^{x\ln a})=\dfrac{d}{dx}(x\ln a)\cdot \dfrac{d}{dx}(e^u)=\ln a\cdot e^{x\ln a}=\ln a\cdot a^x

Plugging in x=0 , we get

f'(0)=\ln a\cdot a^0=\ln a\cdot 1=\ln a

Therefore, we have

\lim _{x\rightarrow 0}\dfrac{a^{x}-1}{x}=f'(0)=\ln a

Hence, we have shown that

\lim _{x\rightarrow 0}\dfrac{a^{x}-1}{x}=\ln a

I hope this helps you understand the solution. 😊

可称之为完美解答

© 本文著作权归KOICHI所有,未经许可不得转载使用。