定积分原理推导(Calculus With Analytic Geometry Additional problems for chapter 6-2)
  微積分

定积分原理推导(Calculus With Analytic Geometry Additional problems for chapter 6-2)

 次点击
21 分钟阅读
使用自定义字体 使用自定义字体

这是定积分原理推导的第二道题目,先看英文原题:

show that

\int _{1}^{b}\dfrac{1}{x^{2}}dx=1-\dfrac{1}{b}

by using equal subintervals and taking x_{k}^{\ast }=\sqrt{x_{k-1}\cdot x_{k}} in formula (12) of Section 6.4(同第一题中所指公式)。

还是一样,先画出草图

示意图

首先,根据定积分的定义以及题意,可知将1和b之间分成n等份,由此将该曲线与x轴之间的面积分成n个长方形。

得到每个长方形的底边(也就是每等份之间隔)为\dfrac{b-1}{n},为了方便起见,我们将\dfrac{b-1}{n} 记为m

再用m 分别表示x_{0}x_{1}x_{n}

\begin{aligned}x_{0}&=1\ \\ x_{1}&=1+m\ \\ x_{2}&=1+2m\ \\ \vdots \ \\ x_{n}&=1+nm=b\end{aligned}

再根据题目之要求,taking x_{k}^{\ast }=\sqrt{x_{k-1}\cdot x_{k}} in formula (12) of Section 6.4,得到

\begin{aligned}x_{1}^{\ast }&=\sqrt{x_{0}\cdot x_{1}}=\sqrt{1\cdot \left( 1+m\right) }\ \\ x_{2}^{\ast }&=\sqrt{x\cdot x_{2}}=\sqrt{\left( 1+m\right) \cdot \left( 1+2m\right) }\ \\ \vdots \ \\ x_{n}^{\ast }&=\sqrt{x_{n-1}\cdot x_{n}}=\sqrt{\left[ 1+\left( n-1\right) m\right] \cdot \left( 1+nm\right) }\end{aligned}

再根据f\left( x\right) =\dfrac{1}{x^{2}},得到每个长方形的高:

\begin{aligned}f\left( x_{1}^{\ast }\right) &=\dfrac{1}{1\cdot \left( 1+m\right) }\ \\ f\left( x_{2}^{\ast }\right) &=\dfrac{1}{\left( 1+m\right) \cdot \left( 1+2m\right) }\ \\ \vdots \ \\ f\left( x_{n}^{\ast }\right) &=\dfrac{1}{\left[ 1+\left( n-1\right) m\right] \cdot \left( 1+nm\right) }\end{aligned}

再计算得到每个长方形之面积如下:

\begin{aligned}S_{1}&=f\left( x_{1}^{\ast }\right) \cdot m=\dfrac{1}{1\cdot \left( 1+m\right) }\cdot m\ \\ S_{2}&=f\left( x_{2}^{\ast }\right) \cdot m=\dfrac{1}{\left( 1+m\right) \cdot \left( 1+2m\right) }\cdot m\ \\ \vdots \ \\ S_{n}&=f\left( x_{n}^{\ast }\right) \cdot m=\dfrac{1}{\left[ 1+\left( n-1\right) m\right] \cdot \left( 1+nm\right) }\cdot m\end{aligned}

原题中还有一个提示,可以直接帮助解决这个求和问题:

Hint: It will be necessary to use a variation of the idea behind the formula

\begin{aligned}\dfrac{1}{1\cdot 2}+\dfrac{1}{2\cdot 3}+\ldots +\dfrac{1}{\left( n-1\right) n}\ &=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\ldots -\dfrac{1}{n}\ \\ &=1-\dfrac{1}{n}\end{aligned}

在此,稍加注意:

\begin{aligned}\dfrac{1}{1}-\dfrac{1}{1+m}&=\dfrac{1+m-1}{1\cdot \left( 1+m\right) }\ \\ &=\dfrac{m}{1\cdot \left( 1+m\right) }\end{aligned}

从而很容易得出所有长方形的面积之和为:

\begin{aligned}S_{sum}&=S_{1}+S_{2}+\ldots +S_{n}\ \\ &=\dfrac{1}{1}-\dfrac{1}{1+m}+\dfrac{1}{1+m}-\dfrac{1}{1+2m}+\ldots -\dfrac{1}{1+nm}\ \\ &=1-\dfrac{1}{1+nm}\end{aligned}

最后将上式中的 m 替换为 \dfrac{b-1}{n} 得到:

\begin{aligned}1-\dfrac{1}{1+nm}=\dfrac{nm}{1+nm}&=\dfrac{b-1}{b}\ \\ &=1-\dfrac{1}{b}\end{aligned}

证毕

© 本文著作权归KOICHI所有,未经许可不得转载使用。