我们设任意直线 ax+by+c=0
然后设直线外任意一点的坐标为 \left( x_{0},y_{0}\right)
显然,该点到已知直线最短的距离,应当为过点 p_{0} 作已知直线的垂线(这个结论通过微积分可以很简单得到证明,在此不作赘述),设前述交点的坐标为\left( x,y\right),又因为直线的斜率为-\dfrac{a}{b},可以得到点p_{0}和交点确定的直线斜率为\dfrac{b}{a},从而得到以下关键等式:
\dfrac{y-y_{0}}{x-x_{0}}=\dfrac{b}{a}
又设点到直线距离为S,则根据勾股定理,有:
S^{2}=\left( y-y_{0}\right) ^{2}+\left( x-x_{0}\right) ^{2}
将前面关键等式,替换到上面这个等式得到:
\begin{aligned}S^{2}&=\dfrac{b^{2}}{a^{2}}\left( x-x_{0}\right) ^{2}+\left( x-x_{0}\right) ^{2}\ \\&=\dfrac{a^{2}+b^{2}}{a^{2}}\left( x-x_{0}\right) ^{2}\end{aligned}
因此有:
S=\dfrac{\sqrt{a^{2}+b^{2}}}{a}\cdot \left( x-x_{0}\right)
又因为:y=-\dfrac{a}{b}x-\dfrac{c}{b}和\dfrac{y-y_{0}}{x-x_{0}}=\dfrac{b}{a},可以得到下面等式:
x-x_{0}=\dfrac{-a^{2}x-ac-aby_{0}}{b^{2}}
将这个表达式替换到前面S的等式中,得到:
\begin{aligned}S &=\dfrac{\sqrt{a^{2}+b^{2}}}{a}\cdot \left( \dfrac{-a^{2}x-ac-aby_{0} }{b^{2}}\right) \ \\&=\sqrt{a^{2}+b^{2}}\cdot \left( \dfrac{-ax-c-by_{0}}{b^{2}}\right) \end{aligned}
再将直线方程和前面最开始的关键等式结合,得到:
\begin{aligned}\dfrac{-\dfrac{a}{b}x-\dfrac{c}{b}-y_{0}}{x-x_{0}}=\dfrac{b}{a}\end{aligned}
和
\begin{aligned}x-x_{0}=-\dfrac{a^{2}}{b^{2}}x-\dfrac{ac}{b^{2}}-\dfrac{aby_{0}}{b^{2}}\end{aligned}
我们的目的是用所有已知量表达未知量x,继续:
\begin{aligned}\dfrac{a^{2}+b^{2}}{b^{2}}x&=-\dfrac{ac}{b^{2}}-\dfrac{aby_{0}}{b^{2}}+x_{0}\ \\&=\dfrac{-ac-aby_{0}+b^{2}x_{0}}{b^{2}}\end{aligned}
最终得到:
x=\dfrac{-ac-aby_{0}+b^{2}x_{0}}{a^{2}+b^{2}}
将这个关于 x 的表达式替换到前面 S 的表达式中得到:
\begin{aligned}S&=\sqrt{a^{2}+b^{2}}\cdot \dfrac{-ax-c-by_{0}}{b^{2}}\ \\&=\dfrac{\sqrt{a^{2}+b^{2}}}{b^{2}}\cdot \left( -ax-c-by_{0}\right) \
\\&=\dfrac{\sqrt{a^{2}+b^{2}}}{b^{2}}\cdot \dfrac{-a\left( -ac-aby_{0}+b^{2}x_{0}\right) -bc^{2}-a^{2}c-b^{3}y_{0}-a^{2}by_{0}}{a^{2}+b^{2}}\
\\&=\dfrac{1}{b^{2}}\cdot \dfrac{a^{2}c+a^{2}by_{0}-ab^{2}x_{0}-b^{2}c-a^{2}c-b^{3}y_{0}-a^{2}by_{0}}{\sqrt{a^{2}+b^{2}}}\
\\&=\dfrac{\left| ax_{0}+by_{0}+c\right| }{\sqrt{a^{2}+b^{2}}}\end{aligned}
至此,推导完毕