这应该是6月1日保荐代表人考试后更新的第一篇文章,不管如何,今年接下去应该可以好好学点数学和好好看点自己真正想看的书了。前段时间,明显发现自己过于浮躁,这是务必急需改正的。今日记录一道积分题,看似简单,实则将积分可以使用的方法几乎都用了一遍,并且环环相扣,数学的解题过程的确让人着迷并且给人以平静。
加下去进入今天的正题,求解$\int \dfrac{x^{4}}{x^{3}-1}dx$
首先,对分子分母进行简化:$$\begin{aligned}\dfrac{x^{4}}{x^{3}-1}=\dfrac{x^{4}-x+x}{x^{3}-1}\
=x+\dfrac{x}{x^{3}-1}\end{aligned}$$
前面的$x$部分很容易完成积分,$$\int xdx=\dfrac{1}{2}x^{2}+C_{1}$$所以现在只需要考虑$\int \dfrac{x}{x^{3}-1}dx$,显然必须对分母进行因式分解了,否则无法进行下一步:$$\begin{aligned}\dfrac{x^{3}-1}{x-1}&=x^{2}+x+1\ \\
x^{3}-1&=\left( x^{2}+x+1\right) \left( x-1\right) \end{aligned}$$
得到:$$\begin{aligned}\int \dfrac{x}{x^{3}-1}dx\
=\int \dfrac{x}{\left( x-1\right) \left( x^{2}+x+1\right) }dx\end{aligned}$$
由于:$\dfrac{x}{\left( x-1\right) \left( x^{2}+x+1\right) }=\dfrac{A}{x-1}+\dfrac{Bx+C}{x^{2}+x+1}$
可以通过下面的简单方法计算得到A,B,C的数值:$$\begin{aligned}Ax^{2}+Ax+A+Bx^{2}-Bx+Cx-C&=x\ \\
A+B&=0\ \\
A-B+C&=1\ \\
A-C&=0\end{aligned}$$
得到:$$\begin{aligned}A&=\dfrac{1}{3}\ \\
B&=-\dfrac{1}{3}\ \\
C&=\dfrac{1}{3}\end{aligned}$$
于是待积分部分又可以分为:$$\begin{aligned}\int \dfrac{x}{x^{3}-1}dx\
&=\int \left( \dfrac{\dfrac{1}{3}}{x-1}+\dfrac{-\dfrac{1}{3}x+\dfrac{1}{3}}{x^{2}+x+1}\right) dx\ \\
&=\dfrac{1}{3}\int \dfrac{dx}{x-1}-\dfrac{1}{3}\int \dfrac{x-1}{x^{2}+x+1}dx\end{aligned}$$
前面的$\begin{aligned}\dfrac{1}{3}\int \dfrac{1}{x-1}dx\
=\dfrac{1}{3}\ln \left( x-1\right) +C_{2}\end{aligned}$很简单可以得到,所以麻烦又留给后面这部分,即:
$$\dfrac{1}{3}\int \dfrac{x-1}{x^{2}+x+1}dx$$
由于:$$d\left( x^{2}+x+1\right) =\left( 2x+1\right) dx$$
可以想到将分子进行变形:
$$x-1=x+\dfrac{1}{2}-\dfrac{3}{2}$$
方面起见,我们使用换元法,令:$$\begin{aligned}x^{2}+x+1&=u\ \\
du&=\left( 2x+1\right) dx\ \\
\dfrac{1}{2}du&=\left( x+\dfrac{1}{2}\right) dx\end{aligned}$$
得到:$$\begin{aligned}\int \dfrac{x-1}{x^{2}+x+1}dx\
&=\int \dfrac{x+\dfrac{1}{2}-\dfrac{3}{2}}{x^{2}+x+1}dx\ \\
&=\dfrac{1}{2}\int \dfrac{du}{u}-\dfrac{3}{2}\int \dfrac{1}{x^{2}+x+1}dx\end{aligned}$$
于是又将问题分为前后两部分,前面的积分很容易得到:
$$\begin{aligned}\dfrac{1}{2}\int \dfrac{du}{u}&=\dfrac{1}{2}\ln u\ \\
&=\dfrac{1}{2}\ln \left( x^{2}+x+1\right) \end{aligned}$$
finally,来到最后一步了,即求以下积分:$$\int \dfrac{dx}{x^{2}+x+1}dx$$
由于分母不可继续因式分解,所以思路自然是凑平方,然后使用三角函数替换法:
$$\begin{aligned}x^{2}+x+1&=\left( x+\dfrac{1}{2}\right) ^{2}+\dfrac{3}{4}\ \\
\int \dfrac{dx}{x^{2}+x+1}&=\int \dfrac{dx}{\left( x+\dfrac{1}{2}\right) ^{2}+\dfrac{3}{4}}\ \\
&=\dfrac{4}{3}\int \dfrac{dx}{\dfrac{4}{3}\left( x+\dfrac{1}{2}\right) ^{2}+1}\end{aligned}$$
同样,方便起见,令$$x+\dfrac{1}{2}=t$$
Get:$$\int \dfrac{dt}{\dfrac{4}{3}t^{2}+1}$$
let and get:$$\begin{aligned}\dfrac{2}{\sqrt{3}}t&=\tan \theta \ \\
dt&=\dfrac{\sqrt{3}}{2}\sec ^{2}\theta d\theta \ \\
1+\dfrac{4}{3}t^{2}&=1+\tan ^{2}\theta =\sec ^{2}\theta \end{aligned}$$
get:$$\begin{aligned}\int \dfrac{dt}{1+\dfrac{4}{3}t^{2}}\
&=\int \dfrac{\dfrac{\sqrt{3}}{2}\sec ^{2}\theta d\theta }{\sec ^{2}\theta }\ \\
&=\dfrac{\sqrt{3}}{2}\theta \end{aligned}$$
因为:$$\theta =\tan ^{-1}\dfrac{2\sqrt{3}}{3}\left( x+\dfrac{1}{2}\right)$$
最后将所有待积分部分进行汇总得到:
$$\begin{aligned}\int \dfrac{x^{4}}{x^{3}-1}dx=\dfrac{1}{2}x^{2}+\dfrac{1}{3}\ln \left( x-1\right) -\dfrac{1}{6}\ln \left( x^{2}+x+1\right) \
+\dfrac{\sqrt{3}}{3}\tan ^{-1}\dfrac{2\sqrt{3}}{3}\left( x+\dfrac{1}{2}\right) \end{aligned}$$
end