Koichi's free world for solitary meditation

  • 哲学-Philosophy
  • 物理-Physics
  • 数学-Mathematics
    • 微积分-Calculus
  • 法律-Law
    • 民法-Civil
    • 知识产权-Intellectual
    • 刑法-Criminal
  • 历史-History
  • 语言-Language
  • 文学-Literature
  • 编程-Program
  • 关于本站以及某人的一些事情(Hint:浏览本站前必看😇)
  • 文章发布时间表
  • 资源检索
從前種種,
譬如昨日死;
從後種種,
譬如今日生。
Koichi's free world 已不稳定运行了0天☀︎☽🙄🥺
人生如此短暂➠人生倒计时
X 天 X 时 X 分 X 秒

极限与导数(献给CHATGPT)

  • koichi
  • 2023-12-05
  • 0

一直以来,对于极限的概念都十分模糊,所以在解决此涉及极限的问题时,无从下手。

由于此前CHATGPT的数学能力一直不尽如人意,今天怀着试一试的心态,在对话框中输入了本题,令人惊讶的是,它居然给出了令人十分满意的答案。特此记录,献给CHATGPT!

题目如下:

If $a$ is a positive number, show that $$\lim _{x\rightarrow 0}\dfrac{a^{x}-1}{x}=\ln a$$Hint: The limit is a value of a certain derivative.

CHATGPT给出的解题步骤(详细且逻辑性极强):

To show that $$\lim _{x\rightarrow 0}\dfrac{a^{x}-1}{x}=\ln a$$ we can use the definition of the derivative of a function at a point. Recall that the derivative of a function $f(x)$ at a point $x=c$ is given by $$f'(c)=\lim _{x\rightarrow c}\dfrac{f(x)-f(c)}{x-c}$$
Now, let $f(x)=a^x$, where $a$ is a positive number. Then, the derivative of $f(x)$ at $x=0$ is $$f'(0)=\lim _{x\rightarrow 0}\dfrac{f(x)-f(0)}{x-0}=\lim _{x\rightarrow 0}\dfrac{a^x-a^0}{x}=\lim _{x\rightarrow 0}\dfrac{a^x-1}{x}$$ Therefore, we have $$\lim _{x\rightarrow 0}\dfrac{a^{x}-1}{x}=f'(0)$$
But what is $f'(0)$? We can use the property of logarithms that says $$a^x=e^{x\ln a}$$
Then, we have $$f(x)=a^x=e^{x\ln a}$$
Using the chain rule, we can find the derivative of $f(x)$ as follows: $$f'(x)=\dfrac{d}{dx}(e^{x\ln a})=\dfrac{d}{dx}(x\ln a)\cdot \dfrac{d}{dx}(e^u)=\ln a\cdot e^{x\ln a}=\ln a\cdot a^x$$
Plugging in $x=0$, we get $$f'(0)=\ln a\cdot a^0=\ln a\cdot 1=\ln a$$
Therefore, we have $$\lim _{x\rightarrow 0}\dfrac{a^{x}-1}{x}=f'(0)=\ln a$$ Hence, we have shown that $$\lim _{x\rightarrow 0}\dfrac{a^{x}-1}{x}=\ln a$$
I hope this helps you understand the solution. 😊

可称之为完美解答

此文已被偷窥数: 103
© 2025 Koichi's free world for solitary meditation
           ® Koichi can never stop ☞ 2123 🤪
Koichi1994 Keep-thinking
  • {{ item.name }}
  • {{ item.name }}